
Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

1 of 14

A U T O N O M O U S V E H I C L E S

Agilicious: Open-source and open-hardware agile
quadrotor for vision-based flight
Philipp Foehn*†, Elia Kaufmann†, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld,
Thomas Laengle, Giovanni Cioffi, Yunlong Song, Antonio Loquercio, Davide Scaramuzza

Autonomous, agile quadrotor flight raises fundamental challenges for robotics research in terms of perception,
planning, learning, and control. A versatile and standardized platform is needed to accelerate research and let
practitioners focus on the core problems. To this end, we present Agilicious, a codesigned hardware and software
framework tailored to autonomous, agile quadrotor flight. It is completely open source and open hardware and
supports both model-based and neural network–based controllers. Also, it provides high thrust-to-weight and
torque-to-inertia ratios for agility, onboard vision sensors, graphics processing unit (GPU)–accelerated compute
hardware for real-time perception and neural network inference, a real-time flight controller, and a versatile soft-
ware stack. In contrast to existing frameworks, Agilicious offers a unique combination of flexible software stack
and high-performance hardware. We compare Agilicious with prior works and demonstrate it on different agile
tasks, using both model-based and neural network–based controllers. Our demonstrators include trajectory
tracking at up to 5g and 70 kilometers per hour in a motion capture system, and vision-based acrobatic flight
and obstacle avoidance in both structured and unstructured environments using solely onboard perception. Last,
we demonstrate its use for hardware-in-the-loop simulation in virtual reality environments. Because of its versa-
tility, we believe that Agilicious supports the next generation of scientific and industrial quadrotor research.

INTRODUCTION
Quadrotors are extremely agile vehicles. Exploiting their agility in
combination with full autonomy is crucial for time-critical missions,
such as search and rescue, aerial delivery, and even flying cars. For
this reason, over the last decade, research on autonomous, agile
quadrotor flight has continually pushed platforms to higher speeds
and agility (1–10).

To further advance the field, several competitions have been
organized—such as the autonomous drone racing series at recent
IROS (International Conference on Intelligent Robots and Systems)
and NeurIPS conferences (3, 11–13) and the AlphaPilot challenge
(6, 14)—with the goal to develop autonomous systems that will
eventually outperform expert human pilots. Million-dollar projects,
such as AgileFlight (15) and Fast Lightweight Autonomy (FLA) (4),
have also been funded by the European Research Council and the
U.S. government, respectively, to further push research. Agile flight
comes with ever-increasing engineering challenges because perform-
ing faster maneuvers with an autonomous system requires more
capable algorithms, specialized hardware, and proficiency in system
integration. As a result, only a small number of research groups
have undertaken the notable overhead of hardware and software
engineering and have developed the expertise and resources to
design quadrotor platforms that fulfill the requirements on weight,
sensing, and computational budget necessary for autonomous agile
flight. This work aims to bridge this gap through an open-source
agile flight platform, enabling everyone to work on agile autonomy
with minimal engineering overhead.

The platforms and software stacks developed by research groups
(2, 4, 16–21) vary strongly in their choice of hardware and software
tools. This is expected, because optimizing a robot with respect to

different tasks based on individual experience in a closed-source re-
search environment leads to a fragmentation of the research com-
munity. For example, although many research groups use the Robot
Operating System (ROS) middleware to accelerate development,
publications are often difficult to reproduce or verify because they
build on a plethora of previous implementations of the authoring
research group. In the worst case, building on an imperfect or even
faulty closed-source foundation can lead to wrong or nonreproducible
conclusions, slowing down research progress. To break this cycle
and to democratize research on fast autonomous flight, the robotics
community needs an open-source and open-hardware quadrotor
platform that provides the versatility and performance needed for a
wide range of agile flight tasks. Such an open and agile platform does
not yet exist, which is why we present Agilicious, an open-source and
open-hardware agile quadrotor flight stack (https://agilicious.dev)
summarized in Fig. 1.

To reach the goal of creating an agile, autonomous, and versatile
quadrotor research platform, two main design requirements must be
met by the quadrotor: It must carry the required compute hardware
needed for autonomous operation, and it must be capable of agile flight.

To meet the first requirement on computing resources needed for
true autonomy, a quadrotor should carry sufficient compute capa-
bility to concurrently run estimation, planning, and control algorithms
onboard. With the emergence of learning-based methods, efficient
hardware acceleration for neural network inference is also required.
To enable agile flight, the platform must deliver an adequate thrust-
to-weight ratio (TWR) and torque-to-inertia ratio (TIR). The TWR
can often be enhanced using more powerful motors, which in turn
require larger propellers and thus a larger size of the platform.
However, the TIR typically decreases with higher weight and size,
because the moment of inertia increases quadratic with the size and
linearly with the weight. As a result, it is desirable to design a light-
weight and small platform (22, 23) to maximize agility (i.e., maximize
both TWR and TIR). Therefore, the platform should meet the best

Department of Informatics, University of Zurich, Zurich, Switzerland.
*Corresponding author. Email: foehn@ifi.uzh.ch
†These authors contributed equally to this work.

Copyright © 2022
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original U.S.
Government Works

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

https://agilicious.dev
mailto:foehn@ifi.uzh.ch

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

2 of 14

trade-off, because maximizing compute resources competes against
maximizing the flight performance.

Apart from hardware design considerations, a quadrotor research
platform needs to provide the software framework for flexible usage
and reproducible research. This entails the abstraction of hardware
interfaces and a general codesign of software and hardware neces-
sary to exploit the platform’s full potential. Such codesign must ac-
count for the capabilities and limitations of each system component,
such as the complementary real-time capabilities of common oper-
ating systems and embedded systems, communication latencies and
bandwidths, system dynamics bandwidth limitations, and efficient
usage of hardware accelerators. In addition to optimally using hard-
ware resources, the software should be built in a modular fashion to
enable rapid prototyping through a simple exchange of compo-
nents, in both simulation and real-world applications. This modu-
larity enables researchers to test and experiment with their research
code, without the requirement to develop an entire flight stack,
accelerating time to development and facilitating reproducibility of
results. Last, the software stack should run on a broad set of com-
puting boards and be efficient and easy to transfer and adapt by
having minimal dependencies and provide known interfaces, such
as the widely used ROS.

The complex set of constraints and design objectives is difficult
to meet. There exists a variety of previously published open-source
research platforms, which, although well designed for low-agility
tasks, could only satisfy a subset of the aforementioned hardware

and software constraints. In the following section, we list and
analyze prominent examples such as the FLA platform (4), the MRS
quadrotor (20), the ASL-Flight (17), the MIT-Quad (24), the GRASP-
Quad (2), or our previous work (18).

The FLA platform (4) relies on many sensors, including Lidars
and laser-range finders in conjunction with a powerful onboard
computer. Although this platform can easily meet autonomous flight
computation and sensing requirements, it does not allow agile flight
beyond 2.4 g of thrust, limiting the flight envelope to near-hover
flight. The MRS platform (20) provides an accompanying software
stack and features a variety of sensors. Although this hardware and
software solution allows fully autonomous flight, the actuation
renders the system not agile with a maximum thrust-to-weight of
2.5. The ASL-Flight (17) is built on the DJI Matrice 100 platform
and features an Intel NUC as the main compute resource. Similarly
to the MRS platform, the ASL-Flight has very limited agility due to
its weight being on the edge of the platform’s takeoff capability. The
comparably smaller GRASP-Quad proposed in (2) operates with only
onboard inertial measurement unit (IMU) and monocular camera
while having a weight of only 250 g. Nevertheless, the Qualcomm
Snapdragon board installed on this platform lacks computational
power, and also, the actuation constrains the maximal accelerations
below 1.5g. Motivated by drone racing, the MIT-Quad (24) reported
accelerations of up to 2.1g, whereas it was further equipped with
NVIDIA Jetson TX2 in (25); however, it does not reach the agility of
Agilicious and contains proprietary electronics. Last, the quadrotor

Fig. 1. The Agilicious software and hardware quadrotor platform are tailored for agile flight while featuring powerful onboard compute capabilities through
an NVIDIA Jetson TX2. The versatile sensor mount allows for rapid prototyping with a wide set of monocular or stereo camera sensors. As a key feature, the software of
Agilicious is built in a modular fashion, allowing rapid software prototyping in simulation and seamless transition to real-world experiments. The Agilicious Pilot encap-
sulates all logic required for agile flight while exposing a rich set of interfaces to the user, from high-level pose commands to direct motor commands. The software stack
can be used in conjunction with a custom modular simulator that supports highly accurate aerodynamics based on BEM (40) or with RotorS (60), hardware-in-the-loop,
and rendering engines such as Flightmare (44). Deployment on the physical platform only requires selecting a different bridge and a sensor-compatible estimator.

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

3 of 14

proposed in (18) is a research platform designed explicitly for agile
flight. Although the quadrotor featured a high thrust-to-weight ratio
of up to 4, its compute resources are very limited, prohibiting truly
autonomous operation. All these platforms are optimized for either
relatively heavy sensor setups or agile flight in nonautonomous settings.
Whereas the former platforms lack the required actuation power to
push the state of the art in autonomous agile flight, the latter have
insufficient compute resources to achieve true autonomy.

Last, several mentioned platforms rely on Pixhawk-PX4 (26), the
Parrot (27), or DJI (28) low-level controllers, which are mostly
treated as blackboxes. This, together with the proprietary nature of
the DJI systems, limits control over the low-level flight characteristics,
which not only limits interpretability of results but also negatively
affects agility. Full control over the complete pipeline is necessary to
truly understand aerodynamic and high-frequency effects, model
and control them, and exploit the platform to its full potential.

Apart from platforms mainly developed by research laboratories,
several quadrotor designs are proposed by industry [Skydio (29), DJI
(28), and Parrot (27)] and open-source projects [PX4 (26), Paparazzi
(21), and Crazyflie (30)]. Although Skydio (29) and DJI (28) both
develop platforms featuring a high level of autonomy, they do not
support interfacing with custom code and therefore are of limited
value for research and development purposes. Parrot (27) provides
a set of quadrotor platforms tailored for inspection and surveillance
tasks that are accompanied by limited software development kits
that allow researchers to program custom flight missions. In con-
trast, PX4 (26) provides an entire ecosystem of open-source soft-
ware and hardware as well as simulation. Although these features
are extremely valuable especially for low-speed flight, both cross-
platform hardware and software are not suited to push the quadro-
tor to agile maneuvers. Similarly, Paparazzi (21) is an open-source
project for drones, which supports various hardware platforms.
However, the supported autopilots have very limited onboard com-
pute capability, rendering them unsuited for agile autonomous flight.
The Crazyflie (30) is an extremely lightweight quadrotor platform
with a takeoff weight of only 27 g. The minimal hardware setup
leaves no margin for additional sensing or computation, prohibiting
any nontrivial navigation task.

To address the requirements of agile flight, the shortcomings of
existing works, and to enable the research community to progress fast
toward agile flight, we present an open-source and open-hardware
quadrotor platform for agile flight at more than 5g acceleration while
providing substantial onboard compute and versatile software. The
hardware design leverages recent advances in motor, battery, and
frame design initiated by the first-person view (FPV) racing com-
munity. The design objectives resulted in creating a lightweight 750-g
platform with maximal speed of 131 km/hour. This high-performance
drone hardware is combined with a powerful onboard computer that
features an integrated graphics processing unit (GPU), enabling com-
plex neural network architectures to run at high frequency while
concurrently running optimization-based control algorithms at low
latency onboard the drone. The most important features of the
Agilicious framework are summarized and compared with relevant
research and industrial platforms in Fig. 2. A qualitative comparison
of mutually contradicting onboard computational power and agility
is also presented in Fig. 2.

In codesign with the hardware, we complete the drone design
with a modular and versatile software stack, called Agilicious. It pro-
vides a software architecture that allows easy transfer of algorithms

from prototyping in simulation to real-world deployment in instru-
mented experiment setups, and even pure onboard-sensing appli-
cations in unknown and unstructured environments.

This modularity is key for fast development and high-quality re-
search, because it allows users to quickly substitute existing compo-
nents with new prototypes and enables all software components to
be used in stand-alone testing applications, experiments, bench-
marks, or even completely different applications.

The hardware and software presented in this work have been
developed, tested, and refined throughout a series of research pub-
lications (3, 9, 10, 31–35). All these publications share the ambition to
push autonomous drones to their physical limits. The experiments,
performed in a diverse set of environments, demonstrate the versa-
tility of Agilicious by deploying different estimation, control, and plan-
ning strategies on a single physical platform. The flexibility to easily
combine and replace both hard- and software components in the flight
stack while operating on a standardized platform facilitates testing
new algorithms and accelerates research on fast autonomous flight.

RESULTS
Our experiments, conducted in simulation and in the real world,
demonstrate that Agilicious can be used to perform cutting-edge
research in the fields of agile quadrotor control, quadrotor trajectory
planning, and learning-based quadrotor research. We evaluate the
capabilities of the Agilicious software and hardware stack in a large
set of experiments that investigate trajectory tracking performance,
latency of the pipeline, and combinations of Agilicious with a set of
commercially or openly available vision-based state estimators.
Last, we present two demonstrators of recent research projects that
build on Agilicious.

Trajectory tracking performance
In this section, we demonstrate the tracking performance of our
platform by flying an aggressive time-optimal trajectory in a drone
racing scenario. In addition, to benchmark our planning and con-
trol algorithms, we compete against a world-class drone racing pilot
FPV pilot, reported in (10). As illustrated in Fig. 3, our drone racing
track consists of seven gates that need to be traversed in a predefined
order as fast as possible. The trajectory used for this evaluation
reaches speeds of 60 km/hour and accelerations of 4g. Flying
through gates at such high speed requires precise state estimates,
which is still an open challenge using vision-based state estimators
(36). For this reason, we conduct these experiments in an instru-
mented flight volume of 30 m × 30 m × 8 m (7200 m3), equipped
with 36 VICON cameras that provide precise pose measurements at
400 Hz. However, even when provided with precise state estimation,
accurately tracking such aggressive trajectories poses considerable
challenges with respect to the controller design, which usually re-
quires several iterations of algorithm development and substantial
tuning effort. The proposed Agilicious flight stack allows us to easily
design, test, and deploy different control methods by first verifying
them in simulation and then fine-tuning them in the real world.
The transition from simulation to real-world deployment requires
no source code changes or adaptions, which reduces the risk of
crashing expensive hardware and is one of the major features of
Agilicious accelerating rapid prototyping. Figure 3 includes a simu-
lated flight that shows similar characteristics and error statistics
compared with the real-world flights described next.

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

4 of 14

We evaluate three different system and control approaches includ-
ing onboard computation with an off-the-shelf BetaFlight (37) flight
controller, our custom open-source agiNuttx controller, and an off-
board control scenario. These three system configurations represent
various use cases of Agilicious, such as running state-of-the-art single-
rotor control onboard the drone using our agiNuttx described in the
“Flight hardware” section, or simple remote control by executing
Agilicious on a desktop computer and forwarding the commands to
the drone. All configurations use the motion capture state estimate
and our single-rotor model-predictive control (MPC) described in
Materials and Methods (38) as high-level controller. We use the single-
rotor thrust formulation to correctly account for actuation limits,
but use body rates and collective thrust as command modality. The
first configuration runs completely onboard the drone with an
additional low-level controller in the form of incremental nonlinear

dynamic inversion (INDI) as described in Materials and Methods
(38). It uses the MPC’s output to compute refined single-rotor thrust
commands using INDI, to reduce the sensitivity to model inaccuracies.
These single-rotor commands are executed using our agiNuttx flight
controller with closed-loop motor speed tracking.

The second configuration also runs onboard and directly for-
wards the body rate and collective thrust command from the MPC
to a BetaFlight (37) controller. This represents the most simplistic
system that does not require flashing the flight controller and is
compatible with a wide range of readily available off-the-shelf hob-
byist drone components. However, in this configuration, the user does
not get any IMU or motor speed feedback, because those are not
streamed by BetaFlight.

The third configuration is equal to the second configuration
with the difference that the Agilicious flight stack runs offboard on

Fig. 2. A comparison of different available consumer and research platforms with respect to available onboard compute capability and agility. The platforms are
compared on the basis of their openness to the community, support of simulation and onboard computation, used low-level controller, CPU power (reported according
to publicly available benchmarks, www.cpubenchmark.net, and corresponding to the speed of solving a set of benchmark algorithms that represent a generic program),
and the availability of onboard general-purpose GPU. The agility of the platforms is expressed in terms of TWR; however, we also report the maximal velocity as an agility
indicator due to limited information about the commercial platforms. The PX4 (26) and the Paparazzi (21) are rather low-level autopilot frameworks without high-level
computation capability, but they can be integrated in other high-level frameworks (4, 20). The open-source frameworks FLA (4), ASL (17), and MRS (20) have relatively large
weight and low agility. The DJI (28), Skydio (29), and Parrot (27) are closed-source commercial products that are not intended for research purposes. The Crazyflie (30) does
not allow for sufficient onboard compute or sensing, while the MIT (25) and GRASP (2) platforms are not available open source. Last, our proposed Agilicious framework
provides agile flight performance, onboard GPU-accelerated compute capabilities, as well as open-source and open-hardware availability.

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

http://www.cpubenchmark.net

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

5 of 14

a desktop or laptop computer. The body rate and collective thrust
commands from the MPC are streamed to the drone using a serial
wireless link implemented through LAIRD (39). This configuration
allows to run computationally demanding algorithms, such as GPU-
accelerated neural networks, with minimal modifications. However,
because of the additional wireless command transmission, there is a
higher latency that can potentially degrade the control performance.

Last, the Agilicious simulation is executed using the same setup
as the first configuration. It uses accurate models for the quadrotor
and motor dynamics, as well as a BEM aerodynamic model as de-
scribed in (40).

Figure 3 depicts the results of these trajectory tracking experi-
ments. Our first proposed configuration (i.e., with onboard compu-
tation and the custom agiNuttx flight controller) achieves the best
overall tracking performance with the lowest average positional root
mean square error (RMSE) of just 0.322 m at up to 60 km/hour and
4g. Next up is the second configuration with BetaFlight, still achieving
less than 0.385-m average positional RMSE. Last, the third configu-
ration with offboard control exhibits higher latency, leading to an
increased average positional RMSE of 0.474 m. As can be seen, our
simulation closely matches the performance observed in real world
in the first configuration. The simulated tracking results in slightly
lower errors, 0.320 RMSE, because even the state-of-the-art aero-
dynamic models (40) fail to reproduce the highly nonlinear and
chaotic real aerodynamics. This simulation accuracy allows a seamless
transition from simulation prototyping to real-world verification and
is one of the prominent advantages of Agilicious.

Additional experiments motivating the choice of MPC as outer-
loop controller and its combination with INDI can be found in (38),
details on the planning of the time-optimal reference trajectory are
elaborated on in (10), and additional extensions to the provided
MPC for fast flight are in (41) and for rotor failure MPC in (42).
These related publications also showcase performance at even high-
er speeds of up to 70 km/hour and accelerations reaching 5g. The
following section gives further insights into the latency of the three

configurations tested here, including on- and offboard control ar-
chitecture, as well as BetaFlight and agiNuttx flight controllers.

Control latency
All real systems with finite resources suffer from communication and
computation delays, whereas dynamic systems and even filters can in-
troduce additional latency and bandwidth limitations. Analyzing and
minimizing these delays is fundamental for the performance in any
control task, especially when tracking agile and fast trajectories in the
presence of model mismatch, disturbances, and actuator limitations. In
this section, we conduct a series of experiments that aim to analyze and
determine the control latency, from command to actuation, of the pro-
posed architecture for the three different choices of low-level configu-
rations: our agiNuttx, BetaFlight, and BetaFlight with offboard control.

For this experiment, the quadrotor has been mounted on a load cell
[ATI Mini 40 SI-20-1; (43)] measuring the force and moment acting
on the platform. To measure the latency, a collective thrust step com-
mand of 12 N is sent to the corresponding low-level controller while
measuring the exerted force on the drone. These force sensor mea-
surements are time-synchronized with the collective thrust commands
and fitted through a first-order system representing motor dynamics.
The measured delays are reported in Fig. 3C as the difference between
the time at which the high level controller sends the collective thrust
command and the time at which the measured force effectively starts
changing. The results show that both agiNuttx has the lowest latency
at 35 ms, with BetaFlight slightly slower at 40.15 ms. A large delay can
be observed when using offboard control and sending the commands
via Laird connection to the drone, in which case the latency rises to
more than 75. The effect of these latencies is also reflected in the track-
ing error in Fig. 3 (A and B). To put the measured delays into perspec-
tive, the motor’s time constant of 39.1 ms, which dictates the actuator
bandwidth limitations, is indicated in Fig. 3C. Last, the “Hardware in
the loop simulation” section gives some insight into the latencies in-
troduced when using Agilicious together with Flightmare (44) in a
hardware-in-the-loop setup.

Fig. 3. An agile trajectory with speeds up to 60 km/hour and an acceleration of 4g, executed in an indoor instrumented flight volume. We compare multiple dif-
ferent drone configurations, including our own low-level flight controller software agiNuttx, an off-the-shelf BetaFlight controller, the BetaFlight controller together with
offboard computing and remote control through a Laird wireless transmitter, and our included simulation. (A) An overview of the flown trajectory. (B) The tracking errors
along a single lap over all three configurations. Our provided agiNuttx achieves the best tracking performance, followed by BetaFlight combined with onboard compu-
tation. In contrast, offloading computation from the drone and controlling it remotely significantly affects performance. This is due to the massively increased latency,
depicted in (C), where, for reference, the motor time constant of 39.1 ms is marked as a dashed line (- - -). (C) shows Tukey box plots with the horizontal lines marking the
median, the boxes marking the quartiles, and the whiskers marking minimum/maximum. In addition, in (B), it is visible that the simulation exhibits very similar error
characteristics because of our accurate aerodynamic modeling.

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

6 of 14

Visual-inertial state estimation
Deploying agile quadrotors outside of instrumented environments
requires access to onboard state estimation. There exist many different
approaches including GPS, lidar, and vision-based solutions. How-
ever, for size- and weight-constrained aerial vehicles, visual-inertial
odometry has proven to be the go-to solution because of the sensors’
complementary measurement modalities, low cost, mechanical sim-
plicity, and reusability for other purposes, such as depth estimation
for obstacle avoidance.

The Agilicious platform provides a versatile sensor mount that is
compatible with different sensors and can be easily adapted to fit
custom sensor setups. In this work, two different visual-inertial
odometry (VIO) solutions are evaluated: (i) the proprietary, off-the-
shelf Intel RealSense T265 and (ii) a simple camera together with the
onboard flight controller IMU and an open-source VIO pipeline in
the form of SVO Pro (45, 46) with its sliding window backend.
Whereas the RealSense T265 performs all computation on-chip and
directly provides a state estimate via USB3.0, the alternative VIO
solution uses the Jetson TX2 to run the VIO software and allows
researchers to interface and modify the state estimation software.
Specifically, for sensor setup (ii), a single Sony IMX-287 camera at
30 Hz with a 165° diagonal field of view is used, combined with the
IMU measurements of the flight controller at 500 Hz, calibrated using
the Kalibr toolbox (47).

To verify their usability, a direct comparison of both VIO solu-
tions with respect to ground truth is provided. Performance is eval-
uated on the basis of the estimation error (48) obtained on two
trajectories flown with Agilicious. The flown trajectories consist of
a circle trajectory with radius of 4 m at a speed of 5 m/s and a Lem-
niscate trajectory with an amplitude of 5 m at a speed of up to 7 m/s.

Figure 4 shows the performance of both VIO solutions in an xy
overview of the trajectories together with their absolute tracking error
(ATE) RMSE. Both approaches perform well on both trajectories,
with the Intel RealSense achieving slightly better accuracy according
to the ATE of 0.151 m on the circle and 0.114 m on the Lemniscate,

compared with the monocular SVO approach with 0.217 and 0.131 m,
respectively. This is expected because the Intel RealSense uses a stereo
camera plus IMU setup and is a fully integrated solution, whereas
sensor setup (ii) aims at minimal cost by only adding a single camera
and otherwise exploiting the existing flight controller IMU and
onboard compute resources.

However, at the timing of writing this manuscript, the Intel
RealSense T265 is being discontinued. Other possible solutions in-
clude camera sensors—such as SevenSense (49), MYNT EYE (50),
or MatrixVision (51)—and other stand-alone cameras, combined
with software frameworks like ArtiSense (52) or SlamCore (53) or
open-source frameworks like VINSmono (54), OpenVINS (55), or
SVO Pro (45, 46) [evaluated in (56)]. Furthermore, there are other
fully integrated alternatives to the Intel RealSense (57), including
the Roboception (58) and the ModalAI Voxl CAM (59).

Demonstrators
The Agilicious software and hardware stack is intended as a flexible
research platform. To illustrate its broad applicability, this section
showcases a set of research projects that have been enabled through
Agilicious. Specifically, we demonstrate the performance of our plat-
form in two different experimental setups covering hardware-in-the-
loop (HIL) simulation and autonomous flight in the wild using only
onboard sensing.

Hardware-in-the-loop simulation
Developing vision-based perception and navigation algorithms for agile
flight not only is slow and time-consuming, due to the large amount
of data required to train and test perception algorithms in diverse
settings, but also progressively becomes less safe and more expen-
sive because more aggressive flights can lead to devastating crashes.
This motivates the Agilicious framework to support hardware-in-
the-loop simulation, which consists of flying a physical quadrotor
in a motion capture system while observing virtual photorealistic
environments, as previously shown in (14). The key advantage of

Fig. 4. A comparison of two different VIO solutions. The first solution consists of the Intel RealSense T265, an off-the-shelf sensor featuring a stereo camera, an IMU,
and an integrated VIO pipeline running on the integrated compute hardware. The second solution consists of a monocular camera, the IMU of the onboard flight controller,
and SVO (45). The estimates of both solutions are compared against motion capture ground truth using (48) on a circle (left) and a Lemniscate trajectory (right), flown
using Agilicious in an indoor environment. Both systems show accurate tracking performance and could be used as cost-effective drop-in replacements for motion
capture systems and enable deployment in the wild. Although the Intel RealSense T265 is a convenient off-the-shelf option, using other cameras in combination with the
onboard flight controller IMU and an open-source or custom VIO pipeline enables tailored solutions and research-oriented data access.

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

7 of 14

hardware-in-the-loop simulation over classical synthetic experiments
(60) is the usage of real-world dynamics and proprioceptive sensors,
instead of idealized virtual devices, combined with the ability to
simulate arbitrarily sparse or dense environments without the risk
of crashing into real obstacles.

The simulation of complex three-dimensional (3D) environments
and realistic exteroceptive sensors is achieved using our high-fidelity
quadrotor simulator (44) built on Unity (61). The simulator can offer
a rich and configurable sensor suite, including RGB (red-green-blue)
cameras, depth sensors, optical flow, and image segmentation, com-
bined with variable sensor noise levels, motion blur, distortion, and
diverse environmental factors such as wind and rain. The simulator

achieves this by introducing only minimal delays (see Fig. 5A),
ranging from 13 ms for 640 × 480 VGA (video graphics array) res-
olution to 22 ms for 1920 × 1080 full HD (high-definition) images,
when rendered on an NVIDIA RTX 2080 GPU. Overall, the inte-
gration of our agile quadrotor platform and high-fidelity visual
simulation provides an efficient framework for the rapid develop-
ment of vision-based navigation systems in complex and unstruc-
tured environments.

Vision-based agile flight with onboard sensing and computation
When a quadrotor can only rely on onboard vision and computa-
tion, perception needs to be effective, low-latency, and robust to

Fig. 5. Illustrations of possible deployment scenarios of the Agilicious flight stack, including simulation, hardware-in-the-loop experimentation, and autonomous
flight in outdoor environments. (A) The hardware-in-the-loop simulation of Agilicious consists of a real quadrotor flying in a motion capture system combined with
photorealistic simulation of complex 3D environments. Multiple sensors can be simulated with minimal delays while virtually flying in various simulated scenes. Such
hardware-in-the-loop simulation offers a modular framework for prototyping robust vision-based algorithms safely, efficiently, and inexpensively. (B to G) The Agilicious
platform is deployed in a diverse set of environments while only relying on onboard sensing and computation. (B to D) The quadrotor performs a set of acrobatic maneuvers
using a learned control policy. (E to G) By leveraging zero-shot sim-to-real transfer, the quadrotor platform performs agile navigation through cluttered environments.IM

A
G

E
 C

R
E

D
IT

S:
 C

O
U

RT
E

SY
 O

F
(B

 T
O

 D
) K

A
U

FM
A

N
N

 E
T

A
L.

 (9
) A

N
D

 (E
 T

O
 G

) L
O

Q
U

E
R

C
IO

 E
T

A
L.

 (3
2)

.
D

ow
nloaded from

 https://w
w

w
.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

8 of 14

disturbances. Violating this requirement may lead to crashes, espe-
cially during agile and fast maneuvers where latency has to be low
and robust to perception disturbances and noise must be high.
However, vision systems either exhibit reduced accuracy or completely
fail at high speeds due to motion blur, large pixel displacements, and
quick illumination changes (62). To overcome these challenges,
vision-based navigation systems generally build upon two different
paradigms. The first uses the traditional perception-planning- and-
control pipeline, represented by stand-alone blocks that are executed
in sequence and designed independently (2, 63–67). Works in the
second category substitute either parts or the complete perception-
planning-and-control pipeline with learning-based methods (9, 68–76).

The Agilicious flight stack supports both paradigms and has been
used to compare traditional and learning-based methods on agile
navigation tasks in unstructured and structured environments
(see Fig. 5). Specifically, Agilicious facilitated quantitative analyses of
approaches for autonomous acrobatic maneuvers (9) (Fig. 5, B to D)
and high-speed obstacle avoidance in previously unknown envi-
ronments (32) (Fig. 5, E to G). Both comparisons feature a rich
set of approaches consisting of traditional planning and control
(31, 64, 66) as well as learning-based methods (9, 32) with different
input and output modalities. Because of its flexibility, Agilicious
enables an objective comparison of these approaches on a unified
control stack, without biasing results due to different low-level con-
trol strategies.

DISCUSSION
The presented Agilicious framework advances the published state
of the art in autonomous quadrotor platform research. It offers
advanced computing capabilities combined with a powerful open-
source and open-hardware quadrotor platform, opening the door
for research on the next generation of autonomous robots. We see
three main axes for future research based on our work.

First, we hypothesize that future flying robots will be smaller,
lighter, cheaper, and consuming less power than what is possible
today, increasing battery life, crash resilience, as well as TWR and
TIR (23). This miniaturization is evident in state-of-the-art research
toward direct hardware implementations of modern algorithms in
the form of application-specific integrated circuits (ASICs), such as
the Navion (77), the Movidius (78), or the PULP processor (79, 80).
These highly specialized in-silicon implementations are typically
magnitudes smaller and more efficient than general compute units.
Their success is rooted in the specific structure many algorithmic
problems exhibit, such as the parallel nature of image data or the
factor graph representations used in estimation, planning, and control
algorithms, like simultaneous localization and mapping (SLAM),
MPC, and neural network inference.

Second, the presented framework was mainly demonstrated with
fixed-shape quadrotors. This is an advantage because the platform
is easier to model and control and less susceptible to hardware failures.
Nevertheless, platforms with a dynamic morphology are by design
more adaptable to the environment and potentially more power
efficient (81–84). For example, to increase flight time, a quadrotor
might transform to a fixed-wing aircraft (85). Because of its flexibility,
Agilicious is the ideal tool for the future development of morphable
and soft aerial systems.

Last, vision-based agile flight is still in the early stages and has not
yet reached the performance of professional human pilots. The main

challenges lie in handling complex aerodynamics, e.g., transient
torques or rotor inflow, low-latency perception and state estima-
tion, and recovery from failures at high speeds. In the last few years,
considerable progress has been made by leveraging data-driven
algorithms (9, 32, 40, 86) and unconventional sensors, such as
event- based cameras (33, 87), that provide a high dynamic range,
low latency, and low battery consumption (88). A major opportu-
nity for future work is to complement the existing capabilities of
Agilicious with unconventional compute devices such as the Intel
Loihi (89–91) or SynSense Dynap (92) neuromorphic processing
architecture, which are specifically designed to operate in an event-
driven compute scheme. Because of the modular nature of Agilicious,
individual software components can be replaced by these uncon-
ventional computing architectures, supporting rapid iteration and
testing.

In summary, Agilicious offers a unique quadrotor test bed to ac-
celerate current and future research on fast autonomous flight. Its
versatility in both hardware and software allows deployment in a
wide variety of tasks, ranging from exploration or search and rescue
missions to acrobatic flight. Furthermore, the modularity of the
hardware setup allows integrating unconventional sensors or even
alternative compute hardware, enabling to test such hardware on an
autonomous agile vehicle. By open-sourcing Agilicious, we provide
the research and industrial community access to a highly agile, ver-
satile, and extendable quadrotor platform.

MATERIALS AND METHODS
Designing a versatile and agile quadrotor research platform requires
codesigning its hardware and software while carefully trading off
competing design objectives such as onboard computing capacity
and platform agility. In the following, the design choices that result-
ed in the flight hardware, compute hardware, and software design
of Agilicious (see Fig. 1) are explained in detail.

Compute hardware
To exploit the full potential of highly unstable quadrotor dynamics,
a high-frequency low-latency controller is needed. Both of these re-
quirements are difficult to meet with general-purpose operating
systems, which typically come without any real-time execution
guarantees. Therefore, we deploy a low-level controller with limited
compute capabilities but reliable real-time performance, which sta-
bilizes high-bandwidth dynamics, such as the motor speeds or the
vehicle’s body rate. This allows complementing the system with a
general-purpose high-level compute unit that can run Linux for
versatile software deployment, with relaxed real-time requirements.
High-level compute board
The high level of the system architecture provides all the necessary
compute performance to run the full flight stack, including estimation,
planning, optimization-based control, neural network inference, or
other demanding experimental applications. Therefore, the main goal
is to provide general-purpose computing power while complying with
the strict size and weight limits. We evaluate a multitude of different
compute modules made from system-on-a-chip solutions because they
allow inherently small footprints. An overview is shown in Table 1.
We exclude the evaluation of two popular contenders: (i) the Intel
NUC platform, because it provides neither any size and weight
advantage over the Jetson Xavier AGX nor a general-purpose GPU,
and (ii) the Raspberry Pi compute modules, because they do not offer

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

9 of 14

any compute advantages over the Odroid and UpBoard and no size
and weight advantage over the NanoPi product family.

Because we target general flight applications, fast prototyping,
and experimentation, it is important to support a wide variety of
software, which is why we chose a Linux-based system. TensorFlow
(93) and PyTorch (94) are some of the most prominent frameworks
with hardware-accelerated neural network inference. Both of them
support accelerated inference on the NVIDIA CUDA general-purpose
GPU architecture, which renders NVIDIA products favorable, because
other products have no or poorly supported accelerators. Therefore,
four valid options remain, listed in the second row of Table 1. Al-
though the Jetson Xavier AGX is beyond our size and weight goals,
the Jetson Nano provides no advantage over the Xavier NX, rendering
both the Jetson TX2 and Xavier NX viable solutions. Because these
two CUDA-enabled compute modules require breakout boards to
connect to peripherals, our first choice is the TX2 due to the better
availability and diversity of such adapter boards and their smaller
footprint. For the breakout board, we recommend the ConnectTech
Quasar (95), providing multiple USB ports, Ethernet, serial ports,
and other interfaces for sensors and cameras.
Low-level flight controller
The low-level flight controller provides real-time low-latency inter-
facing and control. A simple and widespread option is the open-source
BetaFlight (37) software that runs on many commercially available
flight controllers, such as the Radix (96). However, BetaFlight is made
for human-piloted drones and optimized for a good human flight
feeling, but not for autonomous operation. Furthermore, although

it uses high-speed IMU readings for the control loop, it only provides
very limited sensor readings at only 10 Hz. Therefore, Agilicious
provides its own low-level flight controller implementation called
“agiNuttx,” reusing the same hardware as the BetaFlight controllers.
This means that the wide variety of commercially available products
can be bought and reflashed with agiNuttx to provide a low-level
controller suited for autonomous agile flight.

In particular, we recommend using the BrainFPV Radix (96)
controller to deploy our agiNuttx software. The agiNuttx is based on
an open-source NuttX (97) real-time operating system, optimized
to run on embedded microcontrollers such as the STM32F4 used in
many BetaFlight products. Our agiNuttx implementation interfaces
with the motors’ electronic speed controller (ESC) over the digital
bidirectional DShot protocol, allowing not only to command the
motors but also to receive individual rotor speed feedback. This
feedback is provided to the high-level controller together with IMU,
battery voltage, and flight mode information over a 1MBaud serial
bus at 500 Hz. The agiNuttx also provides closed-loop motor speed
control, body rate control, and measurement time synchronization,
allowing estimation and control algorithms to take full advantage of
the available hardware.

Flight hardware
To maximize the agility of the drone, it needs to be designed as
lightweight and small as possible (22) while still being able to ac-
commodate the Jetson TX2 compute unit. With this goal in mind,
we provide a selection of cheap off-the-shelf drone components

Table 1. Overview of compute hardware commonly used on autonomous flying vehicles. Because of the emerging trend of deploying learning-based
methods onboard, hardware solutions are grouped according to the presence of a general-purpose GPU, enabling real-time inference.

Without general-purpose GPU

Product Odroid XU4 Intel UpBoard NanoPi Neo 3 NanoPi Neo air

CPU 8× 32-bit ARM 2.1 GHz 4× 64-bit Atom 1.92 GHz 4× 64-bit ARM 1.5 GHz 4× 32-bit ARM 1.2 GHz

RAM 2 LPDDR3 4 LPDDR3 2 LPDDR4 512 LPDDR3

GPU Mali-T628 Intel HD400 Mali-450 MP4 Mali-400 MP2

FLOPS ~120 GFLOPS ~115 GFLOPS ~40 GFLOPS ~10 GFLOPS

Storage Up to 128 GB EMMC Up to 64 GB EMMC Only SD card 8GB EMMC

Interfaces USB, Ethernet, Serial, I2C, SPI, GPIO USB, Ethernet, Serial, I2C, SPI,
GPIO, 1 camera USB, Ethernet, Serial, I2C, SPI, GPIO USB, Ethernet, WIFI, Serial, I2C,

SPI, GPIO, 1 camera

Size 83 mm × 58 mm × 19 mm 85 mm × 57 mm × 20 mm 40 mm × 40 mm × 23 mm 40 mm × 40 mm × 10 mm

Weight 59 g 79 g 36 g 24 g

With general-purpose GPU

Product NVIDIA Jetson Nano NVIDIA Jetson TX2 NVIDIA Jetson Xavier NX NVIDIA Jetson AGX Xavier

CPU 4× 64-bit ARM 1.43 GHz 6× 64-bit ARM 2.0 GHz 6× 64-bit ARM 1.9 GHz 8× 64-bit ARM 2.26 GHz

RAM 4 GB LPDDR4 8 GB LPDDR4 8 GB LPDDR4 32 GB LPDDR4

GPU 128× Maxwell CUDA 256× Pascal CUDA 384× Volta CUDA 512× Volta CUDA

FLOPS 472 GFLOPS 1.33 TFLOPS 2.12 TFLOPS 11 TFLOPS

Storage 16 GB EMMC 32 GB EMMC 16 GB EMMC 32 GB EMMC

Interfaces USB, Ethernet, Serial, I2C, SPI,
GPIO, 4 cameras

USB, Ethernet, WIFI, Serial, I2C,
SPI, GPIO, 6 cameras

USB, Ethernet, Serial, I2C, SPI,
GPIO, 6 cameras

USB, Ethernet, Serial, I2C, SPI,
GPIO, 6 cameras

Size 69.9 mm × 45 mm × 22 mm 87 mm × 50 mm × 34 mm 69.9 mm × 45 mm × 22 mm 100 mm × 87 mm × 58 mm

Weight 63 g 154 g 79 g 650 g

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

10 of 14

summarized in Table 2. The Armattan Chameleon 6 frame is used
as a base because it is one of the smallest frames with ample space
for the compute hardware. Being made out of carbon fiber, it is
durable and lightweight. The other structural parts of the quadrotor
are custom-designed plastic parts [polylactic acid (PLA) and thermo-
plastic polyurethane (TPU) material] produced using a 3D printer.
Most components are made out of PLA, which is stiffer, and only
parts that act as impact protectors or as predetermined breaking
points are made out of TPU. For propulsion, a 5.1-inch three-bladed
propeller is used in combination with a fast-spinning brushless DC
motor rated at a high maximum power of 758 W. The chosen
motor-propeller combination achieves a continuous static thrust of
4 × 9.5 N on the quadrotor and consumes about 400 W of power per
motor. To match the high power demand of the motors, a lithium-
polymer battery with 1800 mAh and a rating of 120 C is used.
Therefore, the total peak current of 110 A is well within the 216-A
limit of the battery. The motors are powered by an ESC in the form
of the Hobbywing XRotor ESC, due to its compact form factor, its
high continuous current rating (60 A per motor), and support of the
DShot protocol supporting motor speed feedback).

Sensors
To navigate arbitrary uninstrumented environments, drones need
means to measure their absolute or relative location and state. Be-
cause of the size and weight constraints of aerial vehicles and espe-
cially the direct impact of weight and inertia on the agility of the
vehicle, VIO has proven to be the go-to solution for aerial naviga-
tion. The complementary sensing modality of cameras and IMUs and
their low price and excellent availability, together with the depth-sensing
capabilities of stereo camera configurations, allow for a simple, com-
pact, and complete perception setup. Furthermore, our agiNuttx flight
controller already provides high-rate filtered inertial measurements
and can be combined with any off-the-shelf camera (49–51) and
open-source (45, 46, 54, 55) or commercial (52, 53) software to im-
plement a VIO pipeline. In addition, there exist multiple fully inte-
grated products providing out-of-the-box VIO solutions, such as

the Intel RealSense (57), the Roboception rc_visard (58), and the
ModalAI Voxl CAM (59).

The Agilicious flight stack software
To exploit the full potential of our platform and enable fast proto-
typing, we provide the Agilicious flight stack as an open-source
software package. The main development goals for Agilicious are
aligned with our overall design goals: high versatility and modular-
ity, low latency for agile flight, and transferability between simula-
tion and multiple real-world platforms. These goals are met by
splitting the software stack into two parts.

The core library, called “agilib,” is built with minimal dependen-
cies but provides all functionality needed for agile flight, imple-
mented as individual modules (illustrated in Fig. 1). It can be
deployed on a large range of computing platforms, from lightweight
low-power devices to parallel neural network training farms built
on heterogeneous server architectures. This is enabled by avoiding
dependencies on other software components that could introduce
compatibility issues and rely only on the core C++-17 standard and
the Eigen library for linear algebra. In addition, agilib includes a stand-
alone set of unit tests and benchmarks that can be run independently,
with minimal dependencies, and in a self-contained manner.

To provide compatibility to existing systems and software, the
second component is a ROS wrapper, called “agiros,” which enables
networked communication and data logging, provides a simple
graphical user interface (GUI) to command the vehicle, and allows
for integration with other software components. This abstraction
between “agiros” and the core library “agilib” allows a more flexible
deployment on systems or in environments where ROS is not avail-
able or not needed or communication overhead must be avoided.
On the other hand, the ROS-enabled Agilicious provides versatility
and modularity due to a vast number of open-source ROS packages
provided by the research community.

For flexible and fast development, “agilib” uses modular soft-
ware components unified in an umbrella structure called “pipeline”
and orchestrated by a control logic, called “pilot.” The modules
consist of an “estimator,” “sampler,” “controllers,” and a “bridge,”
all working together to track a so-called “reference.” These mod-
ules are executed in sequential order (illustrated in Fig. 1) within
a forward pass of the pipeline, corresponding to one control cy-
cle. However, each module can spawn its individual threads to
perform parallel tasks, e.g., asynchronous sensor data processing.
Agilicious provides a collection of state-of-the-art implementa-
tions for each module inherited from base classes, allowing to
create new implementations outside of the core library and linking
them into the pilot at runtime. Moreover, Agilicious not only is
capable of controlling a drone when running onboard the vehicle
but also can run offboard on computationally more capable hard-
ware and send commands to the drone over low-latency wireless
serial interfaces.

Last, the core library is completed by a physics simulator. Although
this might seem redundant due to the vast variety of simulation
pipelines available (44, 60, 98), it allows the use of high-fidelity
models [e.g., BEM (40) for aerodynamics], evaluates software pro-
totypes without having to interface with other frameworks, avoids
dependencies, and enables even simulation-based continuous in-
tegration testing that can run on literally any platform. The pilot,
software modules, and simulator are all described in the follow-
ing sections.

Table 2. Overview of the components of the flight hardware design.

Component Product Specification

Frame Armattan Chameleon 6 4-mm carbon fiber,
86 g

Motor Xrotor 2306
23 × 6 mm stator,
2400 kV, 758 W,

4× 27.5 g

Propeller Azure Power SFP
5148

5.1 in length and
4.8 in pitch, 4× 5 g

Battery Tattoo R-Line 1800 4× 3.7 V, 1800 mAh,
199 g

Flight controller BrainFPV radix BetaFlight or custom
firmware, 6 g

Motor controller HobbyWing XRotor DShot protocol,
4× 60 A, 15 g

Compute unit NVIDIA Jetson TX2
6× ARM 2.0 GHz,

256× CUDA cores,
8 GB, 154 g

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

11 of 14

Pilot
The pilot contains the main logic needed for flight operation, han-
dling of the individual modules, and interfaces to manage references
and task commands. In its core, it loads and configures the software
modules according to YAML (yet another markup language) (99)
parameter files, runs the control loop, and provides simplified user
interfaces to manage flight tasks, such as position and velocity control
or trajectory tracking. For all state descriptions, we use a right-handed
coordinate system located in the center of gravity, with the Bez point-
ing in body-relative upward thrust direction and Bex pointing along
with the drone’s forward direction. Motion is represented with re-
spect to an inertial world frame, with Iez pointing against the gravity
direction, where translational derivatives (e.g., velocity) are expressed
in the world frame and rotational derivatives (e.g., body rate) are
expressed in the body frame.
Pipeline
The pipeline is a distinct configuration of the sequentially processed
modules. These pipeline configurations can be switched at runtime
by the pilot or the user, allowing switching to backup configurations
in an emergency or quickly alternating between different prototyp-
ing configurations.
Estimator
The first module in the pipeline is the estimator, which provides a
time-stamped state estimate for the subsequent software modules in
the control cycle. A state estimate x = [p, q, v, w, a, , j, s, b, ba, fd, f]
represents position p, orientation unit quaternion q, velocity v, body
rate , linear a and angular accelerations, jerk j, snap s, gyroscope
and accelerometer bias b and ba, and desired and actual single-rotor
thrusts fd and f. Agilicious provides a feed-through estimator to in-
clude external estimates or ground truth from a simulation, as well
as two extended Kalman filters, one with IMU filtering and one using
the IMU as propagation model. These estimators can easily be re-
placed or extended to work with additional measurement sources,
such as GPS or altimeters, and other estimation systems, or even imple-
ment complex localization pipelines such as visual-inertial odometry.
Sampler
For trajectory tracking using a state estimate from the aforemen-
tioned estimator, the controller module needs to be provided with a
subset of points of the trajectory that encode the desired progress
along it, provided by the sampler. Agilicious implements two types
of samplers: a time-based sampling scheme that computes progress
along the trajectory based on the time since trajectory start and a
position-based sampling scheme that selects trajectory progress
based on the current position of the platform, trading off temporally
accurate tracking for higher robustness and lower positional
tracking error.
Controller
To control the vehicle along the sampled reference setpoints, a multi-
tude of controllers are available, which provide the closed-loop
commands for the low-level controller. We provide a state-of-the-
art MPC that uses the full nonlinear model of the platform and that
allows tracking highly agile references using single-rotor thrust
commands or body rate control. In addition, we include a cascaded
geometric controller based on the quadrotor’s differential flatness
(100). The pipeline can cascade two controllers, which even allows
combining the aforementioned MPC (38) or geometric approaches
with an intermediate controller for which we provide an L1 adap-
tive controller (101) and an incremental nonlinear dynamic inver-
sion controller (38).

Bridge
A bridge serves as an interface to hardware or software by sending
control commands to a low-level controller or other means of com-
munication sinks. Low-level commands can be either single-rotor
thrusts or body rates in combination with a collective thrust. Agili-
cious provides a set of bridges to communicate via commonly used
protocols such as ROS, SBUS, and serial. Whereas the ROS bridge
can be used to easily integrate Agilicious in an existing software
stack that relies on ROS, the SBUS protocol is a widely used stan-
dard in the FPV community and therefore allows Agilicious to in-
terface with off-the-shelf flight controllers such as BetaFlight (37).
For simple simulation, there is a specific bridge to interface with the
popular RotorS (60) simulator, which is, however, less accurate than
our own simulation described in the “Simulation” section. Because
Agilicious is written in a general abstract way, it runs on onboard
compute modules and offboard, for which case we provide a bridge to
interface with the LAIRD (39) wireless serial interface. Last, Agilicious
also provides a bridge to communicate to the custom low-level con-
troller described in the “Low-level flight controller” section. This pro-
vides the advantage of gaining access to closed-loop single-rotor
speed control, high-frequency IMU, rotor speed, and voltage mea-
surements at 500 Hz, all provided to the user through the bridge.
References
References are used in conjunction with a controller to encode the
desired flight path of a quadrotor. In Agilicious, a reference is fed to
the sampler, which generates a receding horizon vector of setpoints
that are then passed to the controller. The software stack implements
a set of reference types, consisting of Hover, Velocity, Polynomial,
and Sampled. Whereas Hover references are uniquely defined by a
reference position and a yaw angle, a Velocity reference specifies a
desired linear velocity with a yaw rate. By exploiting the differential
flatness of the quadrotor platform, Polynomial references describe
the position and yaw of the quadrotor as polynomial functions of
time. Sampled references provide the most general reference repre-
sentations. Agilicious provides interfaces to generate and receive
such sampled references and also defines a message and file format
to store references to a file. By defining such formats, a wide variety
of trajectories can be generated, communicated, saved, and execut-
ed using Python or other languages. Last, to simplify the integration
and deployment of other control approaches, Agilicious also expos-
es a command feedthrough, which allows taking direct control over
the applied low-level commands. For safety, even when command
feedthrough is used, Agilicious provides readily available back-up
control that can take over on user request or on timeout.
Guard
To further support users in fast prototyping, Agilicious provides
a so-called guard. This guard uses the quadrotor’s state estimate or
an alternative estimate (e.g., from motion capture when flying with
VIO prototypes) together with a user-defined spatial bounding
box to detect unexpected deviations from the planned flight path.
Further detection metrics can be implemented by the user. Upon
violation of, e.g., the spatial bounding box, the guard can switch
control to an alternative pipeline using a backup estimate and control
configuration. This safety pipeline can, e.g., use a motion capture system
and a simple geometric controller, whereas the main pipeline runs a
VIO estimator, an MPC, reinforcement learning control strategies,
or other software prototypes. By providing this measure of backup,
Agilicious substantially reduces the risk of crashes when testing new
algorithms and allows iterating over research prototypes faster.

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

12 of 14

Simulation
The Agilicious software stack includes a simulator that allows sim-
ulating quadrotor dynamics at various levels of fidelity to accelerate
prototyping and testing. Specifically, Agilicious models motor dy-
namics and aerodynamics acting on the platform. To also incorpo-
rate the different, possibly off-the-shelf, low-level controllers that
can be used on the quadrotors, the simulator can optionally simu-
late the behavior of low-level controllers. One simulator update, typi-
cally called at 1 Hz, includes a call to the simulated low-level controller,
the motor model, the aerodynamics model, and the rigid body dy-
namics model in a sequential fashion. Each of these components is
explained in the following.
Low-level controller and motor model
Simulated low-level controllers run at simulation frequency and con-
vert collective thrust and body rate commands into individual mo-
tor speed commands. The usage of a simulated low-level controller
is optional if the computed control commands are already in the
form of individual rotor thrusts. In this case, the thrusts are mapped
to motor speed commands and then directly fed to the simulated
motor model. The motors are modeled as a first-order system with
a time constant that can be identified on a thrust test stand.
Aerodynamics
The simulated aerodynamics model lift and drag produced by the
rotors from the current ego-motion of the platform and the individ-
ual rotor speeds. Agilicious implements two rotor models: Quadrat-
ic and BEM. The Quadratic model implements a simple quadratic
mapping from rotor rotational speed to produced thrust, as com-
monly done in quadrotor simulators (44, 60, 98). Although such a
model does not account for effects imposed by the movement of a
rotor through the air, it is highly efficient to compute. In contrast,
the BEM model leverages blade element momentum theory (BEM)
to account for the effects of varying relative airspeed on the rotor
thrust. To further increase the fidelity of the simulation, a neural
network predicting the residual forces and torques (e.g., unmodeled
rotor to rotor interactions and turbulence) can be integrated into
the aerodynamics model. For details regarding the BEM model and
the neural network augmentation, we refer the reader to (40).
Rigid body dynamics
Provided with a model of the forces and torques acting on the plat-
form predicted by the aerodynamics model, the system dynamics of the
quadrotor are integrated using a fourth-order Runge-Kutta scheme
with a step size of 1. Agilicious also implements different integra-
tors such as explicit Euler or symplectic Euler.

Apart from providing its own state-of-the-art quadrotor simula-
tor, Agilicious can also be interfaced with external simulators. In-
terfaces to the widely used RotorS quadrotor simulator (60) and
Flightmare (44), including the HIL simulator, are already provided
in the software stack.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scirobotics.abl6259
Movies S1 and S2

REFERENCES AND NOTES
 1. D. Mellinger, N. Michael, V. Kumar, Trajectory generation and control for precise aggressive

maneuvers with quadrotors. Int. J. Robot. Res. 31, 664–674 (2012).
 2. G. Loianno, C. Brunner, G. McGrath, V. Kumar, Estimation, control, and planning

for aggressive flight with a small quadrotor with a single camera and imu. IEEE Robot.
Autom. Lett. 2, 404–411 (2017).

 3. E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, D. Scaramuzza,
Beauty and the beast: Optimal methods meet learning for drone racing. IEEE Int. Conf.
Robot. Autom. (ICRA) 690–696 (2018).

 4. K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun,
A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scaramuzza, K. Daniilidis,
C. J. Taylor, V. Kumar, Fast, autonomous flight in gps-denied and cluttered environments.
J. Field Robot. 35, 101–120 (2018).

 5. B. Zhou, J. Pan, F. Gao, S. Shen, RAPTOR: Robust and perception-aware trajectory
replanning for quadrotor fast flight. IEEE Trans. Robot. 37, 1992–2009 (2021).

 6. P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Muglikar,
D. Scaramuzza, Alphapilot: Autonomous drone racing. Autonom. Robots. 46, 307–320
(2022).

 7. S. Li, M. M. Ozo, C. D. Wagter, G. C. de Croon, Autonomous drone race: A computationally
efficient vision-based navigation and control strategy. Robot. Autonom. Syst. 133, 103621
(2020).

 8. H. Nguyen, M. Kamel, K. Alexis, R. Siegwart, Model predictive control for micro aerial
vehicles: A survey, in 2021 European Control Conference (ECC) (IEEE, 2022).

 9. E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V. Koltun, D. Scaramuzza, Deep drone
acrobatics, in RSS: Robotics, Science, and Systems (Robotics: Science and Systems
Foundation, 2020).

 10. P. Foehn, A. Romero, D. Scaramuzza, Time-optimal planning for quadrotor waypoint
flight. Sci. Robot. 6, abh1221 (2021).

 11. H. Moon, J. Martinez-Carranza, T. Cieslewski, M. Faessler, D. Falanga, A. Simovic,
D. Scaramuzza, S. Li, M. Ozo, C. De Wagter, G. de Croon, S. Hwang, S. Jung, H. Shim,
H. Kim, M. Park, T.-C. Au, S. J. Kim, Challenges and implemented technologies used
in autonomous drone racing. Intell. Serv. Robot. 12, 137–148 (2019).

 12. J. A. Cocoma-Ortega, J. Martínez-Carranza, Towards high-speed localisation for
autonomous drone racing, in Mexican International Conference on Artificial Intelligence
(Springer, 2019).

 13. R. Madaan, N. Gyde, S. Vemprala, M. Brown, K. Nagami, T. Taubner, E. Cristofalo,
D. Scaramuzza, M. Schwager, A. Kapoor, Airsim drone racing lab, in Proceedings of the
NeurIPS 2019 Competition and Demonstration Track (PMLR, 2020).

 14. W. Guerra, E. Tal, V. Murali, G. Ryou, S. Karaman, FlightGoggles: Photorealistic sensor
simulation for perception-driven robotics using photogrammetry and virtual reality, in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (IEEE, 2019).

 15. CORDIS - European Comission, AgileFlight; https://cordis.europa.eu/project/id/864042
[accessed 30 July 2021].

 16. L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, M. Pollefeys, PIXHAWK: A micro
aerial vehicle design for autonomous flight using onboard computer vision. Autonom.
Rob. 33, 21–39 (2012).

 17. I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic, J. Nieto, R. Siegwart, Build
your own visual-inertial drone: A cost-effective and open-source autonomous drone. IEEE
Robot. Autom. Mag. 25, 89–103 (2018).

 18. M. Faessler, A. Franchi, D. Scaramuzza, Differential flatness of quadrotor dynamics subject
to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett. 3,
620–626 (2018).

 19. H. Oleynikova, C. Lanegger, Z. Taylor, M. Pantic, A. Millane, R. Siegwart, J. Nieto, An
open-source system for vision-based micro-aerial vehicle mapping, planning, and flight
in cluttered environments. J. Field Robot. 37, 642–666 (2020).

 20. T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert, M. Saska, The MRS UAV system:
Pushing the frontiers of reproducible research, real-world deployment, and education
with autonomous unmanned aerial vehicles. J. Intell. Rob. Syst. 102, 26 (2021).

 21. G. Hattenberger, M. Bronz, M. Gorraz, Using the paparazzi uav system for scientific
research, in International Micro Air Vehicle Conference and Competition (Delft University of
Technology, 2014), pp. 247–252.

 22. V. Kumar, N. Michael, Opportunities and challenges with autonomous micro aerial
vehicles. Intl. J. Robot. Res. 31, 1279–1291 (2012).

 23. D. Floreano, R. J. Wood, Science, technology and the future of small autonomous drones.
Nature 521, 460–466 (2015).

 24. E. Tal, S. Karaman, Accurate tracking of aggressive quadrotor trajectories using
incremental nonlinear dynamic inversion and differential flatness. IEEE Trans. Control Syst.
Technol. 29, 1203–1218 (2020).

 25. A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, S. Karaman, The blackbird uav dataset.
Int. J. Rob. Res. 39, 1346–1364 (2020).

 26. L. Meier, D. Honegger, M. Pollefeys, Px4: A node-based multithreaded open source
robotics framework for deeply embedded platforms. in Proceedings of the 2015 IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2015), pp. 6235–6240.

 27. P. D. SAS, Parrot ANAFI ai; www.parrot.com/en/drones/anafi-ai [accessed 20 July 2021].
 28. DJI, DJI digital FPV system; www.dji.com/fpv [accessed 20 July 2021].
 29. Skydio, (2021).

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

http://www.science.org/doi/10.1126/scirobotics.abl6259
https://cordis.europa.eu/project/id/864042
http://www.parrot.com/en/drones/anafi-ai
http://www.dji.com/fpv

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

13 of 14

 30. W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, P. Kozierski, Crazyflie 2.0
quadrotor as a platform for research and education in robotics and control engineering,
in Proceedings of the International Conference on Methods and Models in Automation and
Robotics (MMAR) (IEEE, 2017), pp. 37–42.

 31. D. Falanga, P. Foehn, P. Lu, D. Scaramuzza, Pampc: Perception-aware model predictive
control for quadrotors, in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2018), pp. 1–8.

 32. A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, D. Scaramuzza, Agile autonomy:
Learning high-speed flight in the wild. Sci. Robot. 6, eabg5810 (2021).

 33. S. Sun, G. Cioffi, C. De Visser, D. Scaramuzza, Autonomous quadrotor flight despite rotor
failure with onboard vision sensors: Frames vs. events. IEEE Robot. Autom. Lett. 6, 580–587
(2021).

 34. B. Nisar, P. Foehn, D. Falanga, D. Scaramuzza, VIMO: Simultaneous visual inertial model-based
odometry and force estimation. IEEE Robot. Autom. Lett. 4, 2785–2792 (2019).

 35. Y. Song, M. Steinweg, E. Kaufmann, D. Scaramuzza, Autonomous drone racing with deep
reinforcement learning, in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2021).

 36. J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, D. Scaramuzza, Are we ready for
autonomous drone racing? the uzh-fpv drone racing dataset, in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2019).

 37. The Betaflight Open Source Flight Controller Firmware Project, Betaflight; https://github.
com/betaflight/betaflight [accessed 20 July 2021].

 38. S. Sun, A. Romero, P. Foehn, E. Kaufmann,D. Scaramuzza, Quadrotor accurate agile
trajectory tracking: Differential-flatness vs. model-predictive control. arXiv e-prints (2021).

 39. Laird connectivity; www.lairdconnect.com/ [accessed 20 July 2021].
 40. L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, D. Scaramuzza, Neurobem: Hybrid

aerodynamic quadrotor model. Robot. Sci. Syst. (2021).
 41. A. Romero, S. Sun, P. Foehn, D. Scaramuzza, Model predictive contouring control for

near-time-optimal quadrotor flight. arXiv:2108.13205 [cs.RO] (30 August 2021).
 42. F. Nan, S. Sun, P. Foehn, D. Scaramuzza, Nonlinear mpc for quadrotor fault-tolerant

control. arXiv:2109.12886 [cs.RO] (27 September 2021).
 43. A. I. Automation, Ati mini40-si-20-1; www.ati-ia.com/products/ft/ft_models.

aspx?id=Mini40 [accessed 30 November 2021].
 44. Y. Song, S. Naji, E. Kaufmann, A. Loquercio, D. Scaramuzza, Flightmare: A flexible

quadrotor simulator, in Conference on Robot Learning [Proceedings of Machine Learning
Research (PMLR), 2020].

 45. C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scaramuzza, SVO: Semidirect visual
odometry for monocular and multicamera systems. IEEE Trans. Robot. 33, 249–265
(2017).

 46. “Svo Pro: Semi-direct visual-inertial odometry and SLAM for monocular, stereo, and wide
angle cameras; http://rpg.ifi.uzh.ch/svo_pro.html [accessed 30 November 2021].

 47. J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, R. Siegwart, Extending kalibr: Calibrating
the extrinsics of multiple imus and of individual axes, in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2016).

 48. Z. Zhang, D. Scaramuzza, A tutorial on quantitative trajectory evaluation for
visual(−inertial) odometry, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE, 2018).

 49. SevenSense, Alphasense; www.sevensense.ai/product/alphasense-position [accessed
30 November 2021].

 50. M. EYE, S210; www.mynteye.com/pages/s210 [accessed 30 November 2021].
 51. M. Vision, Bluefox; www.matrix-vision.com/en/products/areas/MA08 [accessed

30 November 2021].
 52. ArtiSense, Artislam; www.artisense.ai/vinspro-2020 [accessed 30 November 2021].
 53. SLAMcore, Spatial intelligence sdk; www.slamcore.com/spatial-intelligence-sdk

[accessed 30 November 2021].
 54. T. Qin, P. Li, S. Shen, Vins-mono: A robust and versatile monocular visual-inertial state

estimator. IEEE Trans. Robot. 34, 1004–1020 (2018).
 55. P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, G. Huang, Openvins: A research platform for

visual-inertial estimation, in Proceedings of the IEEE International Conference on Robots and
Automation (ICRA) (IEEE, 2020).

 56. J. Delmerico, D. Scaramuzza, A benchmark comparison of monocular visual-inertial
odometry algorithms for flying robots, in Proceedings of the IEEE International Conference
on Robots and Automation (ICRA) (IEEE, 2018), pp. 2502–2509.

 57. Intel realsense d400 series product; www.intel.com/content/dam/support/us/en/
documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-
Series-Datasheet.pdf.

 58. Roboception, rc_visard; https://roboception.com/en/rc_visard-en/.
 59. ModalAI, Voxl cam; www.modalai.com/pages/voxl-cam-perception-engine [accessed

30 November 2021].
 60. F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Rotors—A modular gazebo mav simulator

framework, in Robot Operating System (ROS) (Springer, 2016), pp. 595–625.

 61. A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, D. Lange, Unity: A general
platform for intelligent agents. arXiv:1809.02627 [cs.LG] (7 September 2018).

 62. C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J. J. Leonard, Past,
present, and future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Trans. Robot. 32, 1309–1332 (2016).

 63. H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, J. I. Nieto, Voxblox: Incremental 3d
euclidean signed distance fields for on-board MAV planning, in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 1366–1373.

 64. P. Florence, J. Carter, R. Tedrake, Integrated perception and control at high speed:
Evaluating collision avoidance maneuvers without maps, in Algorithmic Foundations of
Robotics XII (Springer, 2020), pp. 304–319.

 65. D. Falanga, E. Mueggler, M. Faessler, D. Scaramuzza, Aggressive quadrotor flight through
narrow gaps with onboard sensing and computing using active vision, in IEEE
International Conference on Robotica and Automation (ICRA) (IEEE, 2017), pp. 5774–5781.

 66. B. Zhou, F. Gao, L. Wang, C. Liu, S. Shen, Robust and efficient quadrotor trajectory
generation for fast autonomous flight. IEEE Robot. Autom. Lett. 4, 3529–3536 (2019).

 67. D. Falanga, E. Mueggler, M. Faessler, D. Scaramuzza, Aggressive quadrotor flight through
narrow gaps with onboard sensing and computing using active vision, in IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2017), pp. 5774–5781.

 68. W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, R. Urtasun, End-to-end interpretable
neural motion planner, in IEEE International Conference Computer Vision and Pattern
Recognition (CVPR) (IEEE, 2019), pp. 8660–8669.

 69. W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang, R. Urtasun, Dsdnet: Deep structured
self-driving network, in European Conference on Computer Vision (ECCV) (Springer
International Publishing, 2020), pp. 156–172.

 70. S. Bansal, V. Tolani, S. Gupta, J. Malik, C. J. Tomlin, Combining optimal control and learning
for visual navigation in novel environments. Proc. Mach. Learn. Res. 100, 420–429 (2019).

 71. N. Homayounfar, W.-C. Ma, J. Liang, X. Wu, J. Fan, R. Urtasun, Dagmapper: Learning to
map by discovering lane topology, in IEEE International Conference on Computer Visual
and Pattern Recognition (CVPR) (IEEE, 2019), pp. 2911–2920.

 72. Z. Zhang, D. Scaramuzza, Perception-aware receding horizon navigation for mavs, in IEEE
International Confernce on Robotics and Automation (ICRA) (IEEE, 2018), pp. 2534–2541.

 73. S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, M. Hebert,
Learning monocular reactive UAV control in cluttered natural environments, in IEEE
International Conference on Robotics and Automation (ICRA) (IEEE, 2013), pp. 1765–1772.

 74. F. Sadeghi, S. Levine, CAD2RL: Real single-image flight without a single real image, in
Robotics: Science and Systems RSS, N. M. Amato, S. S. Srinivasa, N. Ayanian, S. Kuindersma,
Eds. (Robotics: Science and Systems Foundation, 2017).

 75. A. Loquercio, A. I. Maqueda, C. R. del-Blanco, D. Scaramuzza, Dronet: Learning to fly by
driving. IEEE Robot. Autom. Lett. 3, 1088–1095 (2018).

 76. D. Gandhi, L. Pinto, A. Gupta, Learning to fly by crashing, in International Conference on
Intelligent Robots and Systems, IROS (IEEE, 2017), pp. 3948–3955.

 77. A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, Navion: A 2-mw fully integrated
Real-Time Visual-Inertial odometry accelerator for autonomous navigation of nano
drones. IEEE J. Solid State Circuits 54, 1106–1119 (2019).

 78. Intel Corporation, Intel movidius myriad X vision processing unit; https://www.intel.com/
content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
[accessed 2 August 2021].

 79. D. Palossi, A. Loquercio, F. Conti, F. Conti, E. Flamand, E. Flamand, D. Scaramuzza,
L. Benini, L. Benini, A 64-mW DNN-based visual navigation engine for autonomous
nano-drones. IEEE Internet Things J. 6, 8357–8371 (2019).

 80. D. Palossi, F. Conti, L. Benini, An open source and open hardware deep Learning-
Powered visual navigation engine for autonomous Nano-UAVs, in Proceedings of the 2019
15th International Conference on Distributed Computing in Sensor Systems (DCOSS) (IEEE,
2019), pp. 604–611.

 81. E. Ajanic, M. Feroskhan, S. Mintchev, F. Noca, D. Floreano, Bioinspired wing and tail
morphing extends drone flight capabilities. Sci. Robot. 5, abc2897 (2020).

 82. E. Chang, L. Y. Matloff, A. K. Stowers, D. Lentink, Soft biohybrid morphing wings
with feathers underactuated by wrist and finger motion. Sci. Robot. 5, aay1246 (2020).

 83. D. Falanga, K. Kleber, S. Mintchev, D. Floreano, D. Scaramuzza, The foldable drone:
A morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 4, 209–216
(2019).

 84. L. Bauersfeld, L. Spannagl, G. Ducard, C. Onder, Mpc flight control for a tilt-rotor vtol
aircraft. IEEE Trans. Aerosp. Electron. Syst. 57, 2395–2409 (2021).

 85. R. D’Sa, D. Jenson, N. Papanikolopoulos, Suav:q - a hybrid approach to solar-powered
flight, in Proceedings of the 2016 IEEE International Conference on Robotics and Automation
(ICRA) (IEEE, 2016), pp. 3288–3294.

 86. G. Torrente, E. Kaufmann, P. Föhn, D. Scaramuzza, Data-driven mpc for quadrotors.
IEEE Robot. Autom. Lett. 6, 3769–3776 (2021).

 87. D. Falanga, K. Kleber, D. Scaramuzza, Dynamic obstacle avoidance for quadrotors
with event cameras. Sci. Robot. 5, aaz9712 (2020).

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

https://github.com/betaflight/betaflight
https://github.com/betaflight/betaflight
http://www.lairdconnect.com/
https://arxiv.org/abs/2108.13205
https://arxiv.org/abs/2109.12886
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Mini40
http://rpg.ifi.uzh.ch/svo_pro.html
http://www.sevensense.ai/product/alphasense-position
http://www.mynteye.com/pages/s210
http://www.matrix-vision.com/en/products/areas/MA08
http://www.artisense.ai/vinspro-2020
http://www.slamcore.com/spatial-intelligence-sdk
http://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
http://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
http://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/Intel-RealSense-D400-Series-Datasheet.pdf
https://roboception.com/en/rc_visard-en/
http://www.modalai.com/pages/voxl-cam-perception-engine
https://arxiv.org/abs/1809.02627
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html

Foehn et al., Sci. Robot. 7, eabl6259 (2022) 22 June 2022

S C I E N C E R O B O T I C S | R E S E A R C H R E S O U R C E

14 of 14

 88. G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger,
A. Davison, J. Conradt, K. Daniilidis, D. Scaramuzza, Event-based vision: A survey. IEEE
Trans. Pattern Anal. Machine Intell. 44, 154–180 (2020).

 89. M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, H. Wang, Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

 90. J. Dupeyroux, J. Hagenaars, F. Paredes-Vallés, G. de Croon, Neuromorphic control for
optic-flow-based landing of MAVs using the Loihi processor. arxiv:2011.00534 [cs.RO]
(1 November 2020).

 91. A. Vitale1, A. Renner, C. Nauer, D. Scaramuzza, Y. Sandamirskaya, Event-driven vision and
control for uavs on a neuromorphic chip, in Proceedings fo the IEEE International
Conference on Robotics and Automation (ICRA) (IEEE, 2021).

 92. S. Moradi, N. Qiao, F. Stefanini, G. Indiveri, A scalable multicore architecture with
heterogeneous memory structures for dynamic neuromorphic asynchronous processors
(DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12, 106–122 (2018).

 93. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous systems (2015); www.
tensorflow.org/.

 94. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style,
high-performance deep learning library, in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, R. Garnett,
Eds. (Curran Associates, Inc., 2019), pp. 8024–8035; http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

 95. Connect Tech Inc., Quasar carrier board; https://connecttech.com/product/quasar-
carrier-nvidia-jetson-tx2/ [accessed 20 July 2021].

 96. M. Luessi, radix; www.brainfpv.com/radix2/ [accessed 20 July 2021].
 97. The Apache Software Foundation, NuttX; https://nuttx.apache.org/ [accessed 20 July 2021].

 98. S. Shah, D. Dey, C. Lovett, A. Kapoor, Airsim: High-fidelity visual and physical
simulation for autonomous vehicles, in Field And Service Robotics (Springer, 2018),
pp. 621–635.

 99. O. Ben-Kiki, C. Evans, I. D. Net, YAML ain’t markup language (YAML™) version 1.2; https://
yaml.org/spec/1.2/spec.pdf [accessed 20 July 2021].

 100. D. Mellinger, V. Kumar, Minimum snap trajectory generation and control for quadrotors,
in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
(IEEE, 2011), pp. 2520–2525.

 101. D. Hanover, E. Kaufmann, P. Foehn, D. Scaramuzza, Performance, precision, and payloads:
Adaptive optimal control for quadrotors under uncertainty, in Proceedings of the IEEE
Robotics and Automation Letters (IEEE, 2021).

Acknowledgments
Funding: This work was supported by the National Centre of Competence in Research (NCCR)
Robotics through the Swiss National Science Foundation (SNSF) and the European Union’s
Horizon 2020 Research and Innovation Program under grant agreement no. 871479
(AERIAL-CORE) and the European Research Council (ERC) under grant agreement no. 864042
(AGILEFLIGHT). Author contributions: P.F. developed the Agilicious software concepts and
architecture, contributed to the Agilicious implementation, helped with the experiments, and
wrote the manuscript. E.K., A.R., R.P., S.S., and L.B. contributed to the Agilicious implementation,
helped with the experiments, and wrote the manuscript. T.L. evaluated the hardware
components, designed and built the Agilicious hardware, helped with the experiments, and
wrote the manuscript. Y.S. contributed to the Agilicious implementation, helped with the
experiments, and wrote the manuscript. A.L. and G.C. helped with the experiments and wrote
the manuscript. D.S. provided funding, contributed to the design and analysis of the
experiments, and revised the manuscript. Competing interests: The authors declare that they
have no competing interests. Data and materials availability: The main purpose of this
paper is to share our data and materials. Therefore, all materials, both software and hardware
designs, are open-source accessible at https://agilicious.dev under the GPL v3.0 license.

Submitted 2 August 2021
Accepted 24 May 2022
Published 22 June 2022
10.1126/scirobotics.abl6259

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

https://arxiv.org/abs/2011.00534
http://www.tensorflow.org/
http://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://connecttech.com/product/quasar-carrier-nvidia-jetson-tx2/
https://connecttech.com/product/quasar-carrier-nvidia-jetson-tx2/
http://www.brainfpv.com/radix2/
https://nuttx.apache.org/
https://yaml.org/spec/1.2/spec.pdf
https://yaml.org/spec/1.2/spec.pdf
https://agilicious.dev

Use of this article is subject to the Terms of service

Science Robotics (ISSN) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Robotics is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight
Philipp FoehnElia KaufmannAngel RomeroRobert PenickaSihao SunLeonard BauersfeldThomas LaengleGiovanni
CioffiYunlong SongAntonio LoquercioDavide Scaramuzza

Sci. Robot., 7 (67), eabl6259. • DOI: 10.1126/scirobotics.abl6259

View the article online
https://www.science.org/doi/10.1126/scirobotics.abl6259
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on June 23, 2022

https://www.science.org/about/terms-service

